# **Cold Spring Ranch**

## Sewer

## **Design Criteria:**

Minimum Pipe Size: 8"

Minimum Slope: 0.334%

Design Flow:

Residential 100 gallons per person per day

(UT R317-3-2.2.B.1) 3.8 capita / Dwelling Unit

333 sq.ft. of building space / capita Commercial

15 gallons per person per day

Peak Factor 4.0

## **Summary of Results (Project Sizes):**

| Design Flow: | Flow:            | Pipe Size Req'd                 |
|--------------|------------------|---------------------------------|
| Pipe 1       | 1,735 gpm (peak) | 15" @ 0.36% min. (24" MP)       |
| Pipe 2       | 1,040 gpm (peak) | 12" @ 0.43% min. (18" & 24" MP) |
| Pipe 3       | 280 gpm (peak)   | 8" @ 0.33% min. (18" MP)        |
| Pipe 4       | 664 gpm (peak)   | 10" @ 0.46% min.                |
| Pipe 5       | 482 gpm (peak)   | 8" @ 0.79% min.                 |
| Pipe 6       | 419 gpm (peak)   | 8" @ 0.60% min.                 |
| Pipe 7       | 50 gpm (peak)    | 8" @ 0.33% min.                 |
| Pipe 8       | 695 gpm (peak)   | 10" @ 0.50% min.                |
| Pipe 9       | 513 gpm (peak)   | 8" @ 0.90% min.                 |
| Pipe 10      | 341 gpm (peak)   | 8" @ 0.40% min.                 |
| Pipe 11      | 205 gpm (peak)   | 8" @ 0.33% min.                 |
| Pipe 12      | 37 gpm (peak)    | 8" @ 0.33% min.                 |
| Total Flow   | 1.735 gpm (peak) |                                 |

Total Flow 1,735 gpm (peak)

### R317-3-2. Sewers.

2.1. General. Construction of a new sewer system project may not begin unless the applicant has submitted an engineering report detailing the design, and construction plans to the executive secretary for review and approval evidenced by a construction permit. The executive secretary will not normally review construction plans for extensions of the existing sewer systems to new areas or replacement of sanitary sewers in the existing sewer systems unless requested or required by state or federal funding programs. Rain water from roofs, streets, and other areas, and ground water from foundation drains must not be allowed to enter the sewer system through planning, design and construction quality assurance and control measures.

### 2.2. Basis of Design

- A. Planning Period. Sewers should be designed for the estimated ultimate tributary population or the 50-year planning period, whichever requires a larger capacity. The executive secretary may approve the design for reduced capacities provided the capacity of the system can be readily increased when required. The maximum anticipated capacity required by institutions, industrial parks, etc. must be considered in the design.
- B. Sewer Capacity. The required sewer capacity shall be determined on the basis of maximum hourly domestic sewage flow; additional maximum flow from industrial plants; inflow; ground water infiltration; potential for sulfide generation; topography of area; location of sewage treatment plant; depth of excavation; and pumping requirements.
- 1. Per Capita Flow. New sewer systems shall be designed on the basis of an annual average daily rate of flow of 100 gallons per capita per day (0.38 cubic meters per capita per day) unless there are data to indicate otherwise. The per capita rate of flow includes an allowance for infiltration/inflow. The per capita rate of flow may be higher than 100 gallons per day (0.38 cubic meters per day) if there is a probability of large amounts of infiltration/inflow entering the system.

#### 2. Design Flow

- a. Laterals and collector sewers shall be designed for 400 gallons per capita per day (1.51 cubic meters per capita per day).
- b. Interceptors and outfall sewers shall be designed for 250 gallons per capita per day (0.95 cubic meters per capita per day), or rates of flow established from an approved infiltration/inflow study.
- c. The executive secretary will consider other rates of flow for the design if such basis is justified on the basis of supporting documentation.
- C. Design Calculations. Detailed computations, such as the basis of design and hydraulic calculations showing depth of flow, velocity, water surface profiles, and gradients shall be submitted with plans. A calculation sheet showing each contributing area and associated pipe sizing is provided on Sheet S-3. Refer to S-4 for the location of all sewer pipes.

#### **COLD SPRING RANCH**

#### SEWER

# FLOW CALCULATIONS Commerical Areas

| Commerical Areas                                                                                       |                   |            |                    |        |        |             | Pipe Flows  |               |              |            |         |        |         |        |          |       |         |        |        |        |        |        |
|--------------------------------------------------------------------------------------------------------|-------------------|------------|--------------------|--------|--------|-------------|-------------|---------------|--------------|------------|---------|--------|---------|--------|----------|-------|---------|--------|--------|--------|--------|--------|
|                                                                                                        | Area (ac)         | BLDG sf/ac | <b>Building SF</b> | Cap/SF | Capita | gal/cap/day | Peak Factor | gpd           | gpm          | Pipe 1 P   | ipe 2   | Pipe 3 | Pipe 4  | Pipe 5 | Pipe 6 P | ipe 7 | Pipe 8  | Pipe 9 | Pipe 1 | .0 Pip | e 11 P | ipe 12 |
| Commercial 1                                                                                           | 19.85             | 20000      | 397000             | 0.003  | 1192   | 15          | 4           | 71532         | 49.7         | 49.7       | 49.7    |        | 49.7    | 49.7   | 49.7     | 49.7  | 7       |        |        |        |        |        |
| Commercial 2                                                                                           | 21.74             | 10000      | 217400             | 0.003  | 653    | 15          | 4           | 39171         | 27.2         | 27.2       |         |        |         |        |          |       | 27.     | 2 27   | 7.2    | 27.2   | 27.2   | 27.2   |
| Commercial 3                                                                                           | 7.65              | 10000      | 76500              | 0.003  | 230    | 15          | 4           | 13784         | 9.6          | 9.6        |         |        |         |        |          |       | 9.      | 6 9    | 9.6    | 9.6    | 9.6    | 9.6    |
| Residential Areas                                                                                      | Density Range ERU |            |                    |        |        |             |             |               |              |            |         |        |         |        |          |       |         |        |        |        |        |        |
|                                                                                                        | Area (ac)         | Low        | High               | Low    | High   | gal/eru/day |             | gpd           | gpm          |            |         |        |         |        |          |       |         |        |        |        |        |        |
| VHD #1                                                                                                 | 12.76             | 12         | 20                 | 153    | 255    | 380         | 4           | 387904        | 269.4        | 269.4      | 269.4   |        | 269.4   | 269.4  | 269.4    |       |         |        |        |        |        |        |
| VHD #2                                                                                                 | 4.71              | 12         | 20                 | 57     | 94     | 380         | 4           | 143184        | 99.4         | 99.4       | 99.4    |        | 99.4    | 99.4   | 99.4     |       |         |        |        |        |        |        |
| HD #1                                                                                                  | 12.21             | 7          | 12                 | 85     | 147    | 380         | 4           | 222710        | 154.7        | 154.7      | 154.7   | 154.7  | 7       |        |          |       |         |        |        |        |        |        |
| HD #2                                                                                                  | 8.66              | 7          | 12                 | 61     | 104    | 380         | 4           | 157958        | 109.7        | 109.7      |         |        |         |        |          |       | 109.    | 7 109  | 9.7 1  | .09.7  | 109.7  |        |
| HD #3                                                                                                  | 4.64              | 7          | 12                 | 32     | 56     | 380         | 4           | 84634         | 58.8         | 58.8       |         |        |         |        |          |       | 58.     | 8 58   | 3.8    | 58.8   | 58.8   |        |
| HD #4                                                                                                  | 10.70             | 7          | 12                 | 75     | 128    | 380         | 4           | 195168        | 135.5        | 135.5      |         |        |         |        |          |       | 135.    | 5 135  | 5.5 1  | 35.5   |        |        |
| HD #5                                                                                                  | 9.86              | 7          | 12                 | 69     | 118    | 380         | 4           | 179846        | 124.9        | 124.9      | 124.9   | 124.9  | 9       |        |          |       |         |        |        |        |        |        |
| MD #1                                                                                                  | 5.05              | 3          | 8                  | 15     | 40     | 380         | 4           | 61408         | 42.6         | 42.6       | 42.6    |        | 42.6    |        |          |       |         |        |        |        |        |        |
| MD #2                                                                                                  | 20.43             | 3          | 8                  | 61     | 163    | 380         | 4           | 248429        | 172.5        | 172.5      |         |        |         |        |          |       | 172.    | 5 172  | 2.5    |        |        |        |
| MD #3                                                                                                  | 7.49              | 3          | 8                  | 22     | 60     | 380         | 4           | 91078         | 63.2         | 63.2       | 63.2    |        | 63.2    | 63.2   |          |       |         |        |        |        |        |        |
| MD #4                                                                                                  | 16.51             | 3          | 8                  | 50     | 132    | 380         | 4           | 200762        | 139.4        | 139.4      | 139.4   |        | 139.4   |        |          |       |         |        |        |        |        |        |
| MD #5                                                                                                  | 21.49             | 3          | 8                  | 64     | 172    | 380         | 4           | 261318        | 181.5        | 181.5      |         |        |         |        |          |       | 181.    | 5      |        |        |        |        |
| LD #1                                                                                                  | 22.85             | 2          | 4                  | 46     | 91     | 380         | 4           | 138928        | 96.5         | 96.5       | 96.5    |        |         |        |          |       |         |        |        |        |        |        |
| PIPE SIZING CALCULATIONS                                                                               |                   |            |                    |        |        |             |             |               |              | Pipe Flows |         |        |         |        |          |       |         |        |        |        |        |        |
| Pipe Sizing Calculation (Project Flows) Pipe 1 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6 Pipe 7 Pipe 8 Pipe 9 |                   |            |                    |        |        |             |             |               | Pipe 1       | .0 Pip     | e 11 Pi | ipe 12 |         |        |          |       |         |        |        |        |        |        |
|                                                                                                        |                   | -          |                    |        |        |             |             |               | Flow (gpm)   | 1735       | 1040    | 280    | ) 664   | 482    | 418      | 50    | ) 69    | 5 5    | 13     | 341    | 205    | 37     |
|                                                                                                        |                   |            |                    |        |        |             | Pro         | posed Pipe Di | iameter (in) | : 15       | 10      | 8      | 3 10    | 8      | 8        | 8     | 3 1     | 0      | 8      | 8      | 8      | 8      |
|                                                                                                        |                   |            |                    |        |        |             |             | Minimum Pip   | e Slope (%): | 0.36%      | 1.12%   | 0.33%  | 6 0.46% | 0.79%  | 0.60%    | 0.33% | 6 0.509 | % 0.90 | 0 %0   | .40%   | 0.33%  | 0.33%  |

1744.3

3.17

ОК

1043.5

4.26

ОК

314.3

2.01

ОК

668.8

2.73

ОК

483.4

3.09

ОК

421.3

2.69

ОК

314.3

2.01

OK

697.2

2.85

OK

515.9

3.29

OK

343.9

2.20

ОК

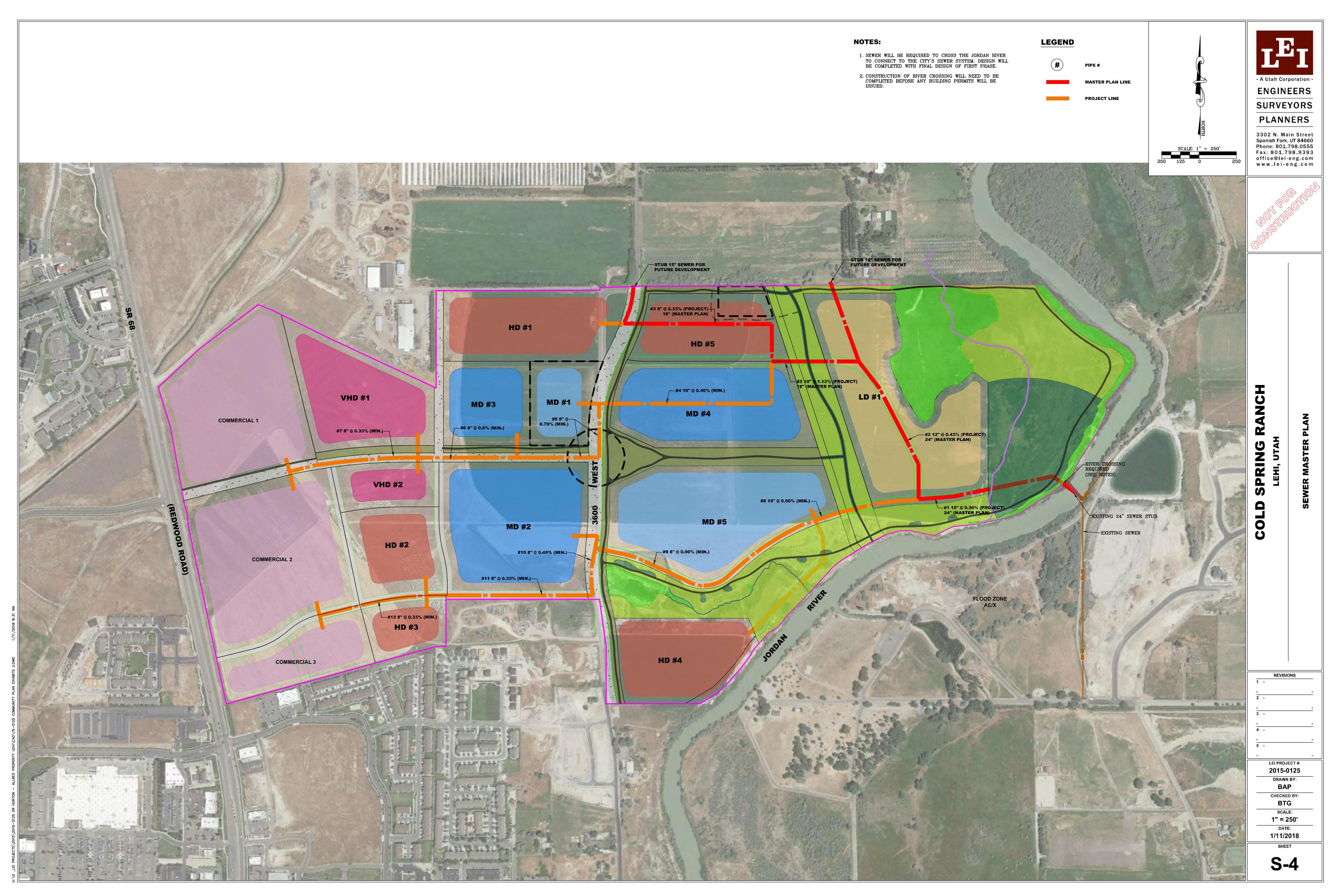
314.3

2.01

OK

314.3

2.01


ОК

Pipe Capacity (gpm):

Pipe Velocity (ft/s): Sizing Check:

#### Notes:

<sup>1 -</sup> Sizing check says "OK" if velocity if greater than 2 ft/s and if pipe capacity is greater than the flow. 2 - GPD calculations are based on the high end of the density range to be conservative.

